Skip to main content

DynamoEdge | Use Cases | Smart Mobility

Customer Problem

One of the world’s leader e-commerce providers asked us to reduce their fleet downtime by 20%.

Background

The analytics needed to operate on new and legacy trucks independent from fleet managers and OEMs. Focused on prediction of driver behavior, condition-based maintenance and enhanced safety of drivers, passengers and pedestrians. Actionable alerts needed to be sent un-attended to multiple users and interfaces across different countries.

DynamoEdge Solution

DRAIVE, is an edge-processing platform for the transportation market that uses machine learning to address data overload and deliver faster and more cost-effective vehicle and operations insights. By performing feature extraction at the CPU and breaking up the AI models across the data pipeline, we created an infinitely scalable platform where each device adds computational power.

Real-time intelligence AT&T & NXP Partners

Section One

I am text block. Click edit button to change this text. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut elit tellus, luctus nec ullamcorper mattis, pulvinar dapibus leo.

Section Two

I am text block. Click edit button to change this text. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut elit tellus, luctus nec ullamcorper mattis, pulvinar dapibus leo.

Section Three

I am text block. Click edit button to change this text. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut elit tellus, luctus nec ullamcorper mattis, pulvinar dapibus leo.

Item No.

01. Research

Quisque molestie elementum quam molestie malesuada. In sagittis urna vitae blandit molestie. Nam aliquet dui neque, eget tincidunt sem accumsan et. Suspendisse egestas, turpis eu pellentesque aliquam.

Item No.

02. Design

Quisque molestie elementum quam molestie malesuada. In sagittis urna vitae blandit molestie. Nam aliquet dui neque, eget tincidunt sem accumsan et. Suspendisse egestas, turpis eu pellentesque aliquam.

Item No.

03. Develop

Quisque molestie elementum quam molestie malesuada. In sagittis urna vitae blandit molestie. Nam aliquet dui neque, eget tincidunt sem accumsan et. Suspendisse egestas, turpis eu pellentesque aliquam.